The geology, mineralisation and mineral potential of Cornwall and Devon

Robin Shail ⁴ Charlie Moon

Priest's Cove, Penwith, Cornwall

Published 1:50,000 gebaugiterridge (3099)ghayaridee and Sardev (3996) based upon BSS wayping

Contrasting onshore and offshore geology

SW England principal geological events

(1) Closing oceans / creating mountains

(2) Collapsing mountains

Prograde metamorphism of lower crust during / following Variscan convergence. High T metamorphic fluids along NW-SE strike-slip fault zones

Variscan convergence

Lithospheric extension brings about mantle partial melting and injection of melts into already hot lower crust

Post-Variscan mineralisation, china clay and hydrocarbon occurrences

Sources: Dines (1956); Parnell (1988), Jackson et al. (1989)

QEMSCAN® fieldscan image of Dolcoath polymetallic vein

district lodes & cross-courses **Camborne-Redruth mining**

Margin of Great Cross-course fault zone, deep adit level, South Crofty Mine

(4) Basins and brines (rifting 1)

Source: Gleeson et al. (2001, GCA)

- Fluids in P-T hosted veins in offshore similar to cross-course
- Some cross-course fluids in E-W veins with earlier granite fluids
- Some cross-course quartz (Menheniot) has granite-type fluids

Source: Scrivener et al. (1994) JGSL

Tamar Valley crosscourse veins.

2

3

Rb-Sr isochron for inclusion fluids and fluorite from the

0.710

0

87Rb/86Sr

5

(4) Mind the gap - where's the Jurassic?

Cretaceous Upper Greensand unconformably overlying Triassic Mercia Mudstone Group east of Sidmouth (viewed from Chit Rocks)

(5/6) Atlantic margin / In the vice

6.1

Neogene (Miocene)

Commodities in SW England

- Metallics- Sn, W, (Cu, Zn, U, Au?)
- China Clay (By-products Li, Nb, Ta)
- Ball Clay
- Aggregates
- Building Stone
- Holes (Waste Disposal)

Fracture-controlled mineralization

a	Туре	Metals	Gangue	Fluids
Triassic 40-220 Ma	Cross-course veins	Pb, Zn, Ag, Fe, Sb, U	qtz, bar, dol, cal, fluor	Fluids from sedimentary
		Mid-Triassic rifting		basins
Lower- Middle Permian 290 – 255 Ma	Chlorite- tourmaline veins	Sn, Cu, Pb, Zn, As, Fe	qtz, kspar, chl, tour, hem, fluor	Variable mixing of granite and country rock fluids
	Tourmaline- quartz (breccia) veins	Sn	tour, qtz	
	Skarn/ replacement	Sn		
	Greisen-bordered sheeted veins	W, As, Sn	qtz, musc, tour	Granite- derived
	Pegmatites	W, As, Bi, Mo, Sn	qtz, kspar, musc, tour	fluids dominate
Lower Permian granite emplacement				

After Chesley et al. (1993)

Tin Price

Source: MSC's annual report 2010

Underground Mining

Hemerdon project – Well drilled and geological simple

- Drill location plan
- Section showing Geology
- Potential to yield Long mine life
- Amax pilot plant recovery ~70% Heavy Media Separation, gravity.

Exploration Drilling & Geology

1

Environmental Constraints

Mineral Rights Issues

- Locating owners
- Owner's liabilities
- Owner's reputation
- Dues
- Length
- LEGAL COSTS

St Austell China Clay Area

South West "local" Market

Source: Bardon Aggregates

TellusSW Data for Minerals an explorer's view

Magnetics

Better delineation of lithologies and feeder or major faults at surface and depth

Detection of magnetite and pyrrhotite rich units

Radiometrics

Direct detection of uranium (²¹⁴Bi) anomalies and mapping granites or sediments (ternary plots)

• Lidar

Mapping topography for detection of old workings and lithology

Hyperspectral

Mineral mapping

Antimony Spatial Context Tamar Catchment

Rawlins, O'Donnell, & Ingham, 2003.